
A Review of Storage and Fault Tolerance
Approaches Used in Cloud Computing

Amit Batra#, Rajender Kumar*, Arvind Kumar#
#CSE Department,

H.C.T.M Kaithal India
* H.C.T.M Kaithal India

Abstract— Cloud computing has gained significant traction in
recent years. Companies such as Google, Amazon and
Microsoft have been building massive data centers over the
past few years. Spanning geographic and administrative
domains, these data centers tend to be built out of commodity
desktops with the total number of computers managed by
these companies being in the order of millions. Additionally,
the use of virtualization allows a physical node to be presented
as a set of virtual nodes resulting in a seemingly inexhaustible
set of computational resources. By leveraging economies of
scale, these data centers can provision cpu, networking, and
storage at substantially reduced prices which in turn
underpins the move by many institutions to host their services
in the cloud. In this survey we will be surveying the most
dominant storage and fault tolerant strategies that are
currently being used in cloud computing settings. There are
several unifying themes that underlie the systems that we
survey.

Keywords— Cloud, GFS,Azure, NFS, RAID, Dynamo.

I. INTRODUCTION
Cloud computing can be defined as a new style of
computing in which dynamically scalable and often
virtualized resources are provided as a services over the
Internet. Cloud computing has become a significant
technology trend, and many experts expect that cloud
computing will reshape information tech- nology(IT)
processes and the IT marketplace. With the cloud
computing technology, users use a variety of devices,
including PCs, laptops, smartphones, and PDAs to access
programs, storage, and application-development platforms
over the Internet, via services offered by cloud computing
providers. Advantages of the cloud computing technology
include cost savings, high availability, and easy scalability.

II. LAYERS OF CLOUD COMPUTING
Cloud computing can be viewed as a collection of services,
which can be presented as a layered cloud computing
architecture, as shown in Fig. 1 below:

Fig. 1 Layered architecture of Cloud Computing
The services offered through cloud computing usually
include IT services referred as to SaaS (Software-as-a-

Service), which is shown on top of the stack. SaaS allows
users to run applica- tions remotely from the cloud.
Infrastructure-as-a-service (IaaS) refers to computing
resources as a service. This includ- es virtualized computers
with guaranteed processing power and reserved bandwidth
for storage and Internet access.
Platform-as-a-Service (PaaS) is similar to IaaS, but also
includes operating systems and required services for a
particular application. In other words, PaaS is IaaS with a
custom software stack for the given application. The data-
Storage-as-a-Service (dSaaS) provides storage that the
consumer is used including bandwidth requirements for the
storage.

III. TYPES OF CLOUD COMPUTING

Fig. 2 Three types of cloud computing

In the public cloud (or external cloud) computing resources
are dynamically provisioned over the Internet via Web
applications or Web services from an off-site third-party
provider. Public clouds are run by third parties, and
applications from different customers are likely to be mixed
together on the cloud’s servers, storage systems, and
networks. Private cloud (or internal cloud) refers to cloud
computing on private networks. Private clouds are built for
the exclusive use of one client, providing full control over
data, security, and quality of service. Private clouds can be
built and managed by a company’s own IT organization or
by a cloud provider.
A hybrid cloud environment combines multiple public and
private cloud models. Hybrid clouds introduce the
complexity of determining how to distribute applications
across both a public and private cloud.
There are several unifying aspects that underlie the systems
that we survey:
Aspect 1: Voluminous Data
The datasets managed by these systems tend to be
extremely voluminous. It is not unusual for these datasets to

 Infrastructure IaaS

 Application

 Platform

 Virtualization

Servers and Storaged SaaS

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1971-1978

1971

be several terabytes. The datasets also tend to be generated
by programs, services and devices as opposed to being
created by a user one character at a time.
 Aspect 2: Commodity Hardware
The storage infrastructure for these datasets tend to rely on
commodity hard drives that have rotating disks. This mech-
anical nature of the disk drives limits their performance.
Whi- le processor speeds have grown exponentially disk
access times have not kept pace. The performance disparity
between processor and disk access times is in the order of
14,000,000:1 and continues to grow.
Aspect 3: Distributed Data
A given dataset is seldom stored on a given node, and is
typically distributed over a set of available nodes. This is
done because a single commodity hard drive typically
cannot hold the entire dataset. Scattering the dataset on a set
of available nodes is also a precursor for subsequent
concurrent processing being performed on the dataset.
Aspect 4: Expect Failures
Since the storage infrastructure relies on commodity
components, failures should be expected. The systems thus
need to have a failure model in place that can ensure
continued progress and acceptable response times despite
any failures that might have taken place. Often these
datasets are replicated, and individual slices of these
datasets have checksums associated with them to detect bit-
flips and the concomitant data corruptions that often taken
place in commodity hardware.
Aspect 5 Tradeoff Between Consistency and Availability
Having a consistent distributed system means that no matter
what node you connect to, you will always find the same
exact data. Here, we take availability to mean that as long
as a request is sent to a node that has not failed it will return
a result. This definition has no bound on time limit, it
simply states that eventually a client will get a response.
Last, there is partition tolerance. A partition occurs when
one part of your distributed system can no longer
communicate with another part, but can still communicate
with clients. The simplest example of this is in a system
with 2 nodes, A and B. If A and B can no longer
communicate with each other, but both can and do keep
serving clients, then the system is partition tolerant. With a
partition-tolerant system, nothing short of a full system
failure keeps the system from working correctly. As a quick
example, let’s look at a partition-tolerant system with two
nodes A and B. Let’s suppose there is some network error
between A and B, and they can no longer communicate
with each other, but both can still connect to clients. If a
client were to write a change a file v hosted on both A and
B while connected to B, the change would go through on B,
but if the client later connects to A and reads v again, the
client will not see their changes, so the system is no longer
consistent. You could get around this by instead sacrificing
availability – if you ignore writes during a network
partition , you can maintain consitency.
Aspect 6 Tune for Access by Applications
Though these storage frameworks are built on top of
existing file systems, the stored datasets are intended to be
processed by applications and not humans. Since the dataset
is scattered on a large number of machines, reconstructing
the dataset requires processing the metadata (data
describing the data) to identify the precise location of
specific portions of the datasets. Manually accessing any of

the nodes to look for a portion of the dataset is futile since
these portions have themselves been modified to include
checksum information.
Aspect 7 Optimize for Dominant Usage
Another important consideration in these storage
frameworks is optimizing the most general access patterns
for these datasets. In some cases, this would mean
optimizing for long, sequential reads that puts a premium
on conserving bandwidth while in others it would involve
optimizing small, continuous updates to the managed
datasets.
Aspect 8 Enabling Technologies
Key technologies that enabled cloud computing are
described in this section; they include virtualization, Web
service and service-oriented architecture, service flows and
workflows, and Web 2.0 and mash up.
Virtualization
The advantage of cloud computing is the ability to
virtualize and share resources among different applications
with the objective for better server utilization. In non-cloud
computing three independent platforms exist for three
different applications running on its own server. In the
cloud, servers can be shared, or virtualized, for operating
systems and applications resulting in fewer servers (in
specific example two servers). Virtualization technologies
include virtual machine techniques such as VMware and
Xen, and virtual networks, such as VPN. Virtual machines
provide virtualized
IT-infrastructures on-demand, while virtual networks
support users with a customized network environment to
access cloud resources.
Web Service and Service Oriented Architecture
Web Services and Service Oriented Architecture (SOA) are
not new concepts; however they represent the base
technologies for cloud computing. Cloud services are
typically designed as Web services, which follow industry
standards including WSDL, SOAP, and UDDI. A Service
Oriented Architecture organizes and manages Web services
inside clouds . A SOA also includes a set of cloud services,
which are available on various distributed platforms.
 Service Flow and Workflows
The concept of service flow and workflow refers to an
integrated view of service based activities provided in
clouds. Workflows have become one of the important areas
of research in the field of database and information systems.

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1971-1978

1972

For completeness we have included a description of the
systems , which explored ideas that have now found its way
into several of the systems.

1. Microsoft Azure
Azure is Microsoft’s cloud computing solution. It consists
of three parts: storage, scalable computing, and the base
fabric to hold everything together across a heterogeneous
network. Figure 3 shows a high level overview of Azure’s
structure:

Fig 3. Azure overview

1.1 Failure
Azure’s fabric layer is made up of machines in a Microsoft
Data Center. The data center is divided into fault domains.
Microsoft defines a fault domain as a set of machines which
can be brought down by the failure of a single piece of
hardware. All machines dedicated to Azure are controlled
by 5–7 fabric controllers. Each machine inside the fabric
has a fabric controller process running which reports the
status of all applications running on that machine (this
includes user apps in different VMs as well as the storage
service). While we are not exactly clear on how storage is
handled inside the fabric, we do know that the fabric
controllers see the storage service as just another
application. If an application dies for any reason, the
controllers are responsible for starting up another instance
of the application.
1.2 Consistency and Guarantees
Azure’s storage guarantees read-what-you-write
consistency – worker threads and clients will be able to
immediately see changes it just wrote. Unfortunately, there
is no clear picture of what this means for other
threads/clients. It also guarantees a replication level of 3 for

all stored data. There have also been no specific guarantees
as to latency or specific mention of SLAs.
1.3 Data Placement
The Azure fabric layer is responsible for the placement of
data. While it is not directly aware of replicas, it is able to
ensure that instances of the storage service are running in
different fault domains. From the whitepapers Microsoft
has made available, it looks like a fabric controller only
operates in one data center. There is a chance that users are
able to choose which data center to use.

2 Bigtable
As the name suggests, Bigtable stores large amounts of data
in a table. While it is not a full relational model, it is
essentially a multidimensional database.
2.1 Replication
As mentioned above, the Bigtable master server makes sure
that only one server is actually modifying a tablet at a time.
While this looks like Bigtable is ignoring replication
entirely, every tablet’s SSTables are actually being stored in
GFS. Bigtable neatly bypasses the problem of replication
and lets GFS handle it. Bigtable will inherit the replication
level of the folders where the SSTables are stored.
2.2 Failures
All failure detection for Bigtable eventually comes down to
Chubby. When a tablet server first starts up, it contacts
Chubby and makes a server-specific file, and obtains an
exclusive lock on it. This lock is kept active as long as the
tablet has a connection to Chubby, and will immediately
stop serving tablets if it loses that lock. If a tablet server
ever contacts Chubby and finds the file gone, it will kill
itself. The master server is responsible for periodically
polling the tablet servers and checking to see if they are still
up. If the master cannot contact a tablet server, it first
checks to see if the tablet server can still communicate with
Chubby. It does so by attempting to obtain an exclusive
lock on the tablet server file. If the master obtains the lock,
Chubby is alive and the tablet can’t communicate with
Chubby. The master then deletes the
server file, ensuring that the server will not attempt to serve
again. If the master’s Chubby session expires, the master
immediately kills itself without effecting tablet serving. A
cluster management system running alongside Bigtable is
responsible for starting up a new master server if this
happens.
The master server will kill itself and the cluster manager
will repeatedly try to kick start a new master until Chubby
starts responding again.
2.3 Accessing Data
Every client is initially sent a library of tablet locations, so
they should initially be able to directly contact the correct
tablet server. Over time, tablet servers die, some may be
added, or tablets may be deleted or split. Bigtable has a 3-
tier hierarchy for tablet location. First, there is a file stored
in Chubby that contains the location of the root tablet.
Every Bigtable instance has its own root tablet. A root
tablet specifies the location of all tablets in a METADATA
table. This METADATA table holds the locations of all
user tables as well as some tablet-specific information
useful for debugging purposes. The root tablet is simply the
first tablet of the METADATA table. The root tablet is
treated specially – it is never split so that the tablet location

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1971-1978

1973

hierarchy doesn’t grow. With this scheme, 234 tablet
locations can be addressed.
The client library caches the tablet locations from the
METADATA table, and will recursively trace through the
hierarchy if it doesn’t have a tablet, or the tablet location
is scale. With an empty cache, it will take 3 round trips but
may take up to 6 with a stale cache. None of these
operations need to read from GFS, so the time is negligible.
The tablet servers have access to sorted SSTables, so they
can usually locate required data (if not already in memory)
with a single disk access.
2.4 Data Integrity
Bigtable is not directly involved with maintaining data
integrity. All Bigtable data is stored in GFS, and that is
what is responsible for actually detecting and fixing any
errors that occur in data. When a tablet server goes down
there is a chance that a table modification was not
committed, or a tablet split was not properly propagated
back to Chubby. Keeping all tablet operation logs in GFS as
well solves the first problem: a new tablet server can read
through the logs, and ensure all tablets are up to date.
Tablet splits are even less of a problem, as a tablet server
will report any tablets it has that are not referenced by
Chubby.
2.5 Consistency and Guarantees
Bigtable guarantees eventual consistency – all replicas are
eventually in sync. Tablet servers store any tablet
modifications in memory, and will write permutations to a
log, but will not necessarily wait for GFS to confirm that a
write has succeeded before confirming it with users. This
helps to improve latency, and give users a more interactive
experience, such as when using Google Earth. Bigtable
inherits all of the GFS guarantees pertaining to data
replication, error recovery, and data placement.
2.6 Metadata
The METADATA table contains the metadata for all tablets
held within an instance of Dynamo. This metadata includes
lists of the SSTables which make up a tablet, and a set of
pointers to commit logs for the tablet. When a tablet server
starts serving a file, it first reads the tablet metadata to learn
which SSTable files need to be loaded. After loading the
SSTables into memory, it works through the commit logs,
and
brings the version in memory up to the point it was at when
the tablet was last accessed.
2.7 Data Placement
All of Bigtable’s data placement is handled by GFS – it has
no direct concern for data placement. As far as Bigtable is
concerned, there are only single copies of files – it uses
GFS handles to access any files needed. While Bigtable is
not
directly aware of multiple versions of files, it can still take
advantage of replicas through GFS.
2.8 Security
Bigtable is designed to run in a trusted environment, and
does not really have much in the way of security measures.
Theoretically, a user may be able to have encrypted row and
column names, as well as the data in the fields. This would
be possible since these are all arbitrary strings. While
encrypting row names means you could potentially use
some of the grouping abilities, there is no reason a user
would not be able to gain some security with this method.

3. Google File System
The Google File System (GFS) is designed by Google to
function as a backend for all of Google’s systems. The
basic assumption underlying its design is that components
are expected to fail. A robust system is needed to detect and
work around these failures without disrupting the serving of
files. GFS is optimized for the most common operations –
long, sequential and short, random reads, as well as large,
appending and small, arbitrary writes. Additionally, a major
goal in designing GFS was to efficiently allow concurrent
appends to the same file. As a design goal, high sustained
bandwidth was deemed more important than low latency in
order to accommodate large datasets. A GFS instance
contains a master server and many chunk servers. The
master server is responsible for maintaining all file system
metadata and managing chunks (stored file pieces). There
are usually also several master replicas, as well as shadow
masters which can handle client reads to help reduce load
on a master server. The chunk servers hold data in 64 MB-
sized chunks.
3.1 Checkpointing
In GFS, the master server will keep logs tracking all chunk
mutation. Once a log file starts to become too big, the
master server will create a checkpoint. These checkpoints
can be used to recover a master server, and are used by the
master replicas to bring a new master process up.
3.2 Replication
By default, all GFS maintains a replication level of 3. This
is, however, a configurable trait: “. . .users can designate
different replication levels for different regions of the file
namespace”. For example, a temp directory generally has a
replication level of 1, and is used as a scratch space. The
master server is responsible for ensuring that the replication
level is met. This not only involves copying over chunks if
a chunk server goes down, but also removing replicas once
a server comes back up. As a general rule, the master server
will try to place replicas on different racks. With Google’s
network setup, the master is able to deduce the network
topology from IP addresses.
3.3 Failures
When it comes to failures, GFS always expects the worst.
The master server regularly exchanges heartbeats with the
chunk servers. If the master server does not receive a
heartbeat from a chunk server in time, it will assume the
server has died, and will immediately start to spread the
chunks located on that server to other servers to restore
replication levels. Should a chunk server recover, it will
start to send heartbeats again and notify the master that it is
back up. At this point the master server will need to delete
chunks in order to drop back down to replication level and
not waste space. Because of this approach, it would be
possible to wreak havoc with a GFS instance by repeatedly
turning on and off a chunk server. Master server failure is
detected by an external management system. Once this
happens, one of the master server replicas is promoted, and
the master server process is started up on it. A full restart
usually takes about 2 minutes – most of this time is spent
polling the chunk servers to find out what chunks they
contain
3.4 Data Access
Clients initially contact the master server to gain access to a
file, after which the client interacts directly with the
necessary chunk server(s). For a multi terabyte file, a client

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1971-1978

1974

can keep track of all chunk servers in its cache. The chunk
server directly interacting with clients is granted a chunk
lease by the master server, and is now known as the
primary. The primary is then responsible for ordering any
operations on the data serially. It is then responsible for
propagating these changes to the other chunk servers that
hold the chunk. If a client is only looking to read data, it is
possible for the client to go through the shadow master as
opposed to the master server. It is possible for concurrent
writes to get interleaved in unexpected ways, or for failed
write attempts to show themselves as repeated data in
chunks. GFS assumes that any application using it is able to
handle these possible problems though redundant data may
hurt the efficiency of reads.
3.5 Data Integrity
Each chunk in GFS keeps track of its own checksum
information this information is unique for each chunk – it is
not guaranteed to be the same even across replicas. Chunk
servers are responsible for checking the checksums of the
chunks they are holding. With this, it is possible for the
system to detect corrupted files. If a corrupted chunk is
detected, the chunk is deleted, and copied from another
replica.
3.6 Consistency and Guarantees
GFS is built to handle multiple concurrent appends on a
single file. It is up to a primary chunk server to order
incoming permutation requests from multiple clients into a
sequential order, and then pass these changes on to all other
replicas. Because of this, it is possible that a client will not
see exactly what they wrote on a sequential read – there is a
possibility that permutations from other clients have been
interleaved with their own. Google describes this state as
consistent but undefined – all clients will see the same data,
regardless of which replica is primary, but mutations may
be interspersed. When there is a write failure, a chunk may
become inconsistent.
This is a case where there may be redundant lines of data in
some but not all replicas. As GFS was built to maintain
bandwidth, as opposed to meet a targeted latency goal there
are no guarantees that pertain to latency. GFS does
guarantee maintenance of the specified replication level
which is achieved using system heartbeats. GFS also cannot
guarantee full consistency in the face of write failures. A
slightly looser definition of consistency – at least a single
copy of all data is fully stored in each replica – is what GFS
supplies. Any application built on top of GFS that can
handle these possible inconsistencies should be able to
guarantee a stronger consistency.
3.7 Metadata
In GFS, the master server contains metadata about all
chunks contained in the system. This is how the master
server keeps track of where the chunks are located. Each
chunk has its own set of metadata as well. A chunk has a
version number, as well as its own checksum information.
3.8 Data Placement
The master server attempts to place replicas on separate
racks, a feat made possible by Google’s network scheme.
The master server also attempts to balance network load, so
it will try to evenly disperse all chunks.
3.9 Security Scheme
GFS expects to be run in a trusted environment, and has no
major security approaches. If a user could bring down a
chunk server, modify the chunk versions held on it, and

reconnect it to the system, GFS would slowly grind to a halt
as it believes that that server has the most up-to-date chunks
and begins deleting and rewriting all these chunks. This
would create a lot of network traffic, and theoretically bring
down not only any service that relies on GFS, but also
anything else that requires network bandwidth to work.

4. Dynamo
Dynamo is the back end for most of the services provided
by Amazon. Like S3 it is a distributed storage system.
Dynamo stores data in key-value pairs, and sacrifices
consistency for availability. Dynamo has been designed to
store relatively small files and to retrieve them very
quickly. A web page may have several services which each
have their own Dynamo instance running in the background
– this is what leads to the necessity of making sure latency
is low when retrieving data.
Dynamo uses consistent hashing to make a scalable system.
Every file in the system identified by a key is hashed, and
this hash value is used to determine which node in the
system it is assigned to. This hash space is treated as a ring,
which is divided into Q equally sized partitions. Each node
(server) in the system is assigned an equal number of
partitions.. In this figure, there are a total of 8 partitions.
Nodes A, B, and C are responsible for keeping copies of all
files where the hashed key falls into the striped partition
that they manage.
4.1 Checkpointing
Dynamo nodes share information via a gossip based
protocol. There are no regular heartbeats sent between the
nodes. All communication is pushed by client requests. If
there is no request for data, the nodes do not communicate
and do not care if another node is down. Periodic tests to
see if a node is available occur only if a node is found to be
unreachable during a client request.
4.2 Replication
With Dynamo, a quorum-like system is used to determine if
a read or write was successful. If enough nodes reply that a
write/read was successful, the whole operation is
considered successful – even if not all N replicas are written
to or read from. Dynamo allows the service writer to
specify not only N, but R and W as well. R is the number of
successful reads necessary for the whole operation to be
successful, and W is the number of writes. Dynamo will
report a successful write if W-1 nodes report success, so to
make a system that is always up, and will never reject a
write, W can be set to 1. Generally, W and R are both less
than N, so that the system can make progress in the
presence of failures. A suggested configuration for Dynamo
is to have R + W > N. A general configuration of (N,R,W)
is (3,2,2).
4.3 Failures
Dynamo operates under the assumption that hardware
failures are expected, and trades data consistency
guarantees for availability. It uses a gossip-based system to
detect failures of nodes. Once a node stops responding,
other nodes will eventually propagate knowledge of the
failure. As a design feature, nodes are not considered
removed unless an administrator issues an explicit removal
command – this means the system will gracefully handle
transient downtimes. If a coordinator cannot reach a node
for a write, it will simply pass the data on to the next
available node in the hash ring. This will contain an extra

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1971-1978

1975

bit of metadata that marks it as belonging elsewhere. Once
a node comes back online, this information can be passed
back to it. If a node is not available, the data presumed to be
on that node is not immediately replicated on another node
this only happens when an administrator explicitly removes
the node via a command. Dynamo is built under the
expectation that there will be many transient failures, so
there is no scramble to ensure replication levels are met
when a node stops responding to requests. Because of this,
some reads may fail if R is set equal to N. Once a node has
been explicitly removed, all key ranges previously held by
that node are reassigned to other nodes while ensuring that
a given node is not overloaded as a result of this
redistribution.
4.4 Accessing Data
Dynamo’s gossip-based protocol for node discovery
ensures that all nodes know in one step the exact node to
send a read or write request to. There are two main methods
of accessing data: (1) using a dedicated node to handle
client requests or (2) having several dedicated nodes, or
coordinators, that process client requests and forward them
to the appropriate nodes. The former approach can lead to
unbalanced network nodes while the latter approach results
in a more balanced network and a lower latency can be
assured.
4.5 Data Integrity
There is no specific mention of detecting corruptions in
data, or how any corresponding error recovery may occur.
Since data is stored as a binary object, it may be left up to
the application developers to detect data corruption, and
handle any sort of recovery. Reported results in live settings
do not indicate permanent data loss. Amazon requires
regular archival of every system – there is a chance that this
archival data is used for recovery if errors in data are found
4.6 Consistency and Guarantees
Dynamo guarantees eventual consistency – there is a
chance that not all replications contain the same data. Due
to transient network failures and concurrent writes, some
changes may not be fully propagated. To solve this
problem, each object also contains a context. This context
contains a version vector, giving the ability to track back
through changes and figure out which version of an object
should carry the most precedence. There are several
different schemes for handling this. Dynamo
itself supports several simple schemes, including a last-
write-wins method. There is also an interface that allows
developers to implement more complex and data specific
merging techniques. Merging of different object versions is
handled on reads. If a coordinator retrieves multiple
versions of an object on a read, it can attempt to merge
differences before sending it to the client. Anything that
cannot be resolved by the coordi- nator is passed onto the
client. Any subsequent write from that client is assumed to
have resolved any remaining conflicts. The coordinator
makes sure to write back the resolved object to all nodes
that responded to the object query. The only other base
guarantee provided by Dynamo is performance geared
towards the 99.99th percentile of users – millisecond
latencies are assured. Aside from this, service developers
are allowed to tweak the system to fit the guarantees
necessary for their application through the N, R and W
settings.

4.7 Metadata
In Dynamo, the object metadata is referred to as context.
Every time data is written, a context is included. The
context contains system metadata and other information
specific to the object such as versioning information. There
may also be an extra binary field which allows developers
to add any additi- onal information needed to help their
application run. The metadata is not searchable, and only
seems to interact with Dynamo when resolving version
conflicts as mentioned above.
4.8 Data Placement
According to DeCandia et al. , there are guarantees in place
to ensure that replicas are spread across different data
centers. It is likely that Amazon has a particular scheme that
allows Dynamo to efficiently determine the locations of
nodes. An object key is first hashed to find its location on
the network ring. Moving around the ring clockwise from
that point, the first encountered node is where the first copy
of the data is placed. The next N-1 nodes (still moving
clockwise) will contain replicas of the data. There are no
current methods of data segregation in Dynamo – there is
simply a get() and put() interface for developers, and no
support for a hierarchical structure. Each service using
Dynamo has its individual instance of it running. For
example, your shopping cart will not be able to access the
best seller’s list. On the other hand, Dynamo has no
guarantees that the different instances are not running on
the same machine.
4.9 Security
Dynamo has been designed to run in a trusted environment,
so there is no structure in place to handle security concerns.
By design, each service that uses Dynamo has its own
separate instance running. Because of this, users do have
some sense of security, as there is some natural separation
of data, and one application cannot access the data of
another.

5. xFS
Unlike the other systems mentioned here, xFS never made
it to a production environment.xFS is the original
“Serverless File System”, and several systems in production
today build upon ideas originally brought up in. xFS was
designed to run on commodity hardware, and expected to
handle large loads and multiple users. Based on tracking
usage patterns in an NFS system for several days, one
assumption xFS makes is that users other than the creator of
the file rarely modify files.
5.1 Failure Model
In xFS, when a machine fails it is not expected to come
back online. Upon failure of a machine, data is
automatically shuff- led around to compensate for the loss.
While failures are as-
summed to be permanent, the system was designed to be
able to come back up from a full loss of functionality.
5.2 Replication
xFS does not support replication of files. Instead, it
supports a RAID approach for storing data. In xFS, servers
are organized into stripe groups. Each stripe group is a
subset of the set of data servers. When a client writes to a
file, it is gathered into a write block that is held in the
client’s cache. There are two clients, each building their
own write block. Once the write block is full, the data is
sent to the server group to be written to file. For a server

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1971-1978

1976

group with N servers, the file is split into N-1 pieces, and
striped in a RAID pattern across all the ser-. vers.The Nth
stripe is a parity block that contains the XOR of all the
other pieces, and is shown as a striped block. This parity
block will go to the parity server for the group. This way, if
a server is lost, or a piece becomes corrupted it can be
restored. One downside to this approach is that if multiple
servers from a group go down, the data may be permanently
lost, and xFS will stop working. In general, the replication
level of a file can never be greater than the number of
servers in the server group.
5.3 Data Access
In xFS a client will connect to a system manager, which
will look up the appropriate server group, and have the
client connect to the server group leader. In general, this
takes about 3 hops (not including the actual transmission of
data). Generally, the system will attempt to move data to
be as close to the user as possible (in many cases, the
design expects the client to be running on a machine that is
also acting as a data server), incurring the short term
penalty in network traffic of moving a file for the long term
bonus of not needing further interaction with a system
manager.
5.4 Integrity
Because of the RAID backend of xFS, data corruption can
be detected and repaired using the parity block computed
when data is written. xFS also uses this information to
recover missing stripe blocks when a server in a stripe
group fails.
5.5 Consistency and Guarantees
xFS guarantees read-what-you-wrote consistency, but it
also allows users to read stale data – meaning that the best
overall consistency guarantee that it can achieve is eventual.
It is also not clear that the system can effectively handle
concurrent writes.xFS never made it to a production
environment, so there was never a strong need to establish
any guarantees governing access times. Additionally, xFS
was designed to
handle flux in the number of available servers.
5.6 Metadata
The main advantage of xFS is its fully dynamic structure.
The idea is to be able to move data around to handle load
fluctuat-ions and to increase locality. The system uses
metadata infor-mation to help locate all files and put them
back together in order.
5.7 Data placement
Managers in xFS try to ensure that data is being held as
close to the client accessing it as possible–in some cases
even shifti-ng the location of data as a client starts writing
to it. While this seems unwieldy, xFS uses a log-based
storage method, so there is not too much of a network hit as
data is shifted with a new write closer to the current client.
5.8 Security
xFS was designed to be run in a trusted environment, and it
is expected that clients are running on machines that are
also acting as storage servers. It is, however, possible for
xFS to be mounted and accessed from an unsafe
environment. Unfortun-ately this is more inefficient and
results in much more network traffic. It is also possible for
a rogue manager to start indiscriminately overwriting data
that can cause the entire system to fail.

6. Amazon S3
The Simple Storage Service (S3) from Amazon is used by
home users, small businesses, academic institutions, and
large enterprises. With S3 (Simple Storage Service), data
can be spread across multiple servers around the US and
Europe (S3-Europe). S3 offers low latency, infinite data
durability, and 99.99% availability.
6.1 Data Access and Management
S3 stores data in 2 levels: a top level of buckets and data
objects. Buckets are similar to folders, and can hold an
unlimited number of data objects. Each Amazon Web
Services (AWS) account can have up to 100 buckets.
Charging for S3 is computed at the bucket level. All costs
levels are tiered, but the basic costs as of January 2010 are
as follows: storage costs $0.15/GB/month in the US, $0.165
in N California, and $0.15/GB/month in Europe; $0.10/GB
for uploads and $0.17/GB for downloads; and $0.01/1,000
PUT, COPY, POST, or LIST operations, $0.001/10,000
GET and all other operations. Each data object has a name,
a blob of data (up to 5 GB), and metadata. S3 imposes a
small set of predefined metadata entries, and allows for up
to 4 KB of user generated {name, value} pairs to be added
to this metadata. While users are allowed to create, modify,
and delete objects in a bucket, S3 does not support
renaming data objects or moving them between buckets–
these operations require the user to first download the entire
object and then write the whole object back to S3. The
search functions are also severely limited in the current
implementa-tion. Users are only allowed to search for
objects by the name of the bucket–the metadata and data
blob itself cannot be searched. Amazon S3 supports three
protocols for accessing data: SOAP, REST, and BitTorrent.
While REST is most popularly used for large data transfers,
BitTorrent has the potential to be very useful for the
transfer of large objects.
6.2 Security
While clients use a Public Key Infrastructure (PKI) based
scheme to authenticate when performing operations with
S3, the user’s public and private keys are generated by
Amazon and the private key is available through the user’s
AWS site. This means that the effective security is down to
the user’s AWS password, which can be reset through
email. Since S3 accounts are linked directly to a credit card,
this can potentially cause the user a lot of problems. Access
control is specified using access control lists (ACL) at both
the bucket and data object level. Each ACL can specify
access permissions for up to 100 identities, and only a
limited number of access control attributes are supported:
read for buckets or data objects, write for buckets, and,
finally, reading and writing the ACL itself. The user can
configure a bucket to store access log records. These logs
contain request type, object accessed, and the time the
request was processed.
6.3 Integrity
The inner workings of Amazon S3 have not been published.
It is hard to determine their approach to error detection and
recovery. Based on the reported usage , there was no
permanent data loss.

IV CONCLUSIONS
In this survey we have surveyed several approaches to data
storage in cloud computing settings. Data centers have, and
will continue, to be built out of commodity components.

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1971-1978

1977

The use of commodity components combined with issues
related to the settings in which these components operate
such as heat dissipations and scheduled downtimes imply
that failures are a common occurrence and should be treated
as such. In these environments, it is no longer a matter of if
a system or component will fail, but simply when. Datasets
are dispersed on a set of machines to cope with their
voluminous nature and to enable concurrent processing on
them. To cope with failures, every slice of the dataset is
replicated a preset number of times; replication allows
applications to sustain failures to machines that hold certain
slices of the dataset and also to initiate error corrections due
to data corruptions. The European Network and Information
Security Agency (ENISA) recently released a document
outlining the security risks in cloud computing settings.
Among the concerns raised in this document include data
protection, insecure or incomplete data deletion, and the
possibility of malicious insiders. Other security related
concerns that have been raised include data segregation,
control over a data’s location, and investigative support.
Most of the systems that we have described here do not
adequately address several of these aforementioned security
concerns and also exacerbate the problem by designing
systems that are presumed to operate in a trusted
environment: this allows us to construct situations, in some
of these systems, where a malicious entity can wreak havoc.
Issues related to security and trust need to be thoroughly
addressed before these settings can be used for mission
critical and sensitive information.

ACKNOWLEDGMENT
We would like to express our gratitude to all those who
gave us the possibility to complete this paper. Furthermore
we would like to thank International Journal of Computer
Science and Information Technology for giving this this
esteemed opportunity for publishing this paper. We would
also like to thank Director, H.C.T.M, Kaithal, as well as
Head of Department(CSE), H.C.T.M., Kaithal for their
collaborat-ion and helping us to make resources availbility.

REFERENCES
[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski,

A., et al. (2009). Above the clouds: A Berkeley view of cloud
computing (University of California at

[2] Berkeley, Tech. Rep. No. UCB/EECS-2009-28).
Brewer, E. A. (2009). Towards robust distributed systems. Principles of

Distributed Computing (PODC) Keynote, Portland, OR.
[3] Brodkin, J. (2008). Gartner: Seven cloud-computing security risks.

Retried Infoworld, July 02 2008
[4]Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A.,

Burrows, M., et al. (2006). Bigtable: A distributed storage system for
structured data. Proceedings of Operating Systems Design and
Implementation (OSDI’06), Seattle, WA, 205–218.

[5]Chappell, D. (2009a). Introducing windows azure (Tech. Rep.,
Microsoft Corporation).

[6]Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The google file
system. 19th Symposium on Operating Systems Principles, New
York, NY, 29–43.

[7]Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility
of consistent, Available, Partition-tolerant web services. ACM
SIGACT News, 33(2), 51–59.

[8]Lamport, L. (2001). Paxos made simple. ACM SIGACT News, 32(4),
18–25.

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1971-1978

1978

