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Abstract— Cloud computing has gained significant traction in 
recent years. Companies such as Google, Amazon and 
Microsoft have been building massive data centers over the 
past few years. Spanning geographic and administrative 
domains, these data centers tend to be built out of commodity 
desktops with the total number of computers managed by 
these companies being in the order of millions. Additionally, 
the use of virtualization allows a physical node to be presented 
as a set of virtual nodes resulting in a seemingly inexhaustible 
set of computational resources. By leveraging economies of 
scale, these data centers can provision cpu, networking, and 
storage at substantially reduced prices which in turn 
underpins the move by many institutions to host their services 
in the cloud. In this survey we will be surveying the most 
dominant storage and fault tolerant strategies that are 
currently being used in cloud computing settings. There are 
several unifying themes that underlie the systems that we 
survey. 
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I. INTRODUCTION 
Cloud computing can be defined as a new style of 
computing in which dynamically scalable and often 
virtualized resources are provided as a services over the 
Internet. Cloud computing has become a significant 
technology trend, and many experts expect that cloud 
computing will reshape information tech- nology(IT) 
processes and the IT marketplace. With the cloud 
computing technology, users use a variety of devices,  
including PCs, laptops, smartphones, and PDAs to access 
programs, storage, and application-development platforms 
over the Internet, via services offered by cloud computing 
providers. Advantages of the cloud computing technology 
include cost savings, high availability, and easy scalability. 
 

II. LAYERS OF CLOUD COMPUTING 
Cloud computing can be viewed as a collection of services, 
which can be presented as a layered cloud computing  
architecture, as shown in Fig. 1 below: 

 
 
 
 
 
 
 
 
 
 
Fig. 1 Layered architecture of Cloud Computing 
The services offered through cloud computing usually 
include IT services referred as to SaaS (Software-as-a-

Service), which is shown on top of the stack. SaaS allows 
users to run applica- tions remotely from the cloud. 
Infrastructure-as-a-service (IaaS) refers to computing 
resources as a service. This includ- es virtualized computers 
with guaranteed processing power and reserved bandwidth 
for storage and Internet access. 
Platform-as-a-Service (PaaS) is similar to IaaS, but also 
includes operating systems and required services for a 
particular application. In other words, PaaS is IaaS with a 
custom software stack for the given application. The data-
Storage-as-a-Service (dSaaS) provides storage that the 
consumer is used including bandwidth requirements for the  
storage. 
 

III. TYPES OF CLOUD COMPUTING 

 
Fig. 2 Three types of cloud computing 

 
In the public cloud (or external cloud) computing resources 
are dynamically provisioned over the Internet via Web 
applications or Web services from an off-site third-party 
provider. Public clouds are run by third parties, and 
applications from different customers are likely to be mixed 
together on the cloud’s servers, storage systems, and 
networks. Private cloud (or internal cloud) refers to cloud 
computing on private networks. Private clouds are built for 
the exclusive use of one client, providing full control over 
data, security, and quality of service. Private clouds can be 
built and managed by a company’s own IT organization or 
by a cloud provider. 
A hybrid cloud environment combines multiple public and 
private cloud models. Hybrid clouds introduce the 
complexity of determining how to distribute applications 
across both a public and private cloud. 
There are several unifying aspects that underlie the systems 
that we survey: 
Aspect 1: Voluminous Data 
The datasets managed by these systems tend to be 
extremely voluminous. It is not unusual for these datasets to 
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be several terabytes. The datasets also tend to be generated 
by programs, services and devices as opposed to being 
created by a user one character at a time. 
 Aspect 2: Commodity Hardware 
The storage infrastructure for these datasets tend to rely on 
commodity hard drives that have rotating disks. This mech- 
anical nature of the disk drives limits their performance. 
Whi- le processor speeds have grown exponentially disk 
access times have not kept pace. The performance disparity 
between processor and disk access times is in the order of 
14,000,000:1 and continues to grow. 
Aspect 3: Distributed Data 
A given dataset is seldom stored on a given node, and is 
typically distributed over a set of available nodes. This is 
done because a single commodity hard drive typically 
cannot hold the entire dataset. Scattering the dataset on a set 
of available nodes is also a precursor for subsequent 
concurrent processing being performed on the dataset. 
Aspect 4: Expect Failures 
Since the storage infrastructure relies on commodity 
components, failures should be expected. The systems thus 
need to have a failure model in place that can ensure 
continued progress and acceptable response times despite 
any failures that might have taken place. Often these 
datasets are replicated, and individual slices of these 
datasets have checksums associated with them to detect bit-
flips and the concomitant data corruptions that often taken 
place in commodity hardware. 
Aspect 5 Tradeoff Between Consistency and Availability 
Having a consistent distributed system means that no matter 
what node you connect to, you will always find the same 
exact data. Here, we take availability to mean that as long 
as a request is sent to a node that has not failed it will return 
a result. This definition has no bound on time limit, it 
simply states that eventually a client will get a response. 
Last, there is partition tolerance. A partition occurs when 
one part of your distributed system can no longer 
communicate with another part, but can still communicate 
with clients. The simplest example of this is in a system 
with 2 nodes, A and B. If A and B can no longer 
communicate with each other, but both can and do keep 
serving clients, then the system is partition tolerant. With a 
partition-tolerant system, nothing short of a full system 
failure keeps the system from working correctly. As a quick 
example, let’s look at a partition-tolerant system with two 
nodes A and B. Let’s suppose there is some network error 
between A and B, and they can no longer communicate 
with each other, but both can still connect to clients. If a 
client were to write a change a file v hosted on both A and 
B while connected to B, the change would go through on B, 
but if the client later connects to A and reads v again, the 
client will not see their changes, so the system is no longer 
consistent. You could get around this by instead sacrificing 
availability – if you ignore writes during a network  
partition , you can maintain consitency. 
Aspect 6  Tune for Access by Applications 
Though these storage frameworks are built on top of 
existing file systems, the stored datasets are intended to be 
processed by applications and not humans. Since the dataset 
is scattered on a large number of machines, reconstructing 
the dataset requires processing the metadata (data 
describing the data) to identify the precise location of 
specific portions of the datasets. Manually accessing any of 

the nodes to look for a portion of the dataset is futile since 
these portions have themselves been modified to include 
checksum information. 
Aspect 7 Optimize for Dominant Usage 
Another important consideration in these storage 
frameworks is optimizing the most general access patterns 
for these datasets. In some cases, this would mean 
optimizing for long, sequential reads that puts a premium 
on conserving bandwidth while in others it would involve 
optimizing small, continuous updates to the managed 
datasets. 
Aspect 8   Enabling Technologies 
Key technologies that enabled cloud computing are 
described in this section; they include virtualization, Web 
service and service-oriented architecture, service flows and 
workflows, and Web 2.0 and mash up. 
Virtualization 
The advantage of cloud computing is the ability to 
virtualize and share resources among different applications 
with the objective for better server utilization. In non-cloud 
computing three independent platforms exist for three 
different applications running on its own server. In the 
cloud, servers can be shared, or virtualized, for operating 
systems and applications resulting in fewer servers (in 
specific example two servers). Virtualization technologies 
include virtual machine techniques such as VMware and 
Xen, and virtual networks, such as VPN. Virtual machines 
provide virtualized 
IT-infrastructures on-demand, while virtual networks 
support users with a customized network environment to 
access cloud resources. 
Web Service and Service Oriented Architecture 
Web Services and Service Oriented Architecture (SOA) are 
not new concepts; however they represent the base 
technologies for cloud computing. Cloud services are 
typically designed as Web services, which follow industry 
standards including WSDL, SOAP, and UDDI. A Service 
Oriented Architecture organizes and manages Web services 
inside clouds . A SOA also includes a set of cloud services, 
which are available on various distributed platforms. 
 Service Flow and Workflows 
The concept of service flow and workflow refers to an 
integrated view of service based activities provided in 
clouds. Workflows have become one of the important areas 
of research in the field of database and information systems. 
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For completeness we have included a description of the  
systems , which explored ideas that have now found its way 
into several of the systems. 
 
1. Microsoft Azure 
Azure is Microsoft’s cloud computing solution. It consists 
of three parts: storage, scalable computing, and the base 
fabric to hold everything together across a heterogeneous 
network. Figure 3 shows a high level overview of Azure’s 
structure: 

 
Fig 3.  Azure overview 

 
1.1 Failure 
Azure’s fabric layer is made up of machines in a Microsoft 
Data Center. The data center is divided into fault domains. 
Microsoft defines a fault domain as a set of machines which 
can be brought down by the failure of a single piece of 
hardware. All machines dedicated to Azure are controlled 
by 5–7 fabric controllers. Each machine inside the fabric 
has a fabric controller process running which reports the 
status of all applications running on that machine (this 
includes user apps in different VMs as well as the storage 
service). While we are not exactly clear on how storage is 
handled inside the fabric, we do know that the fabric 
controllers see the storage service as just another 
application. If an application dies for any reason, the 
controllers are responsible for starting up another instance 
of the application.  
1.2 Consistency and Guarantees 
Azure’s storage guarantees read-what-you-write 
consistency – worker threads and clients will be able to 
immediately see changes it just wrote. Unfortunately, there 
is no clear picture of what this means for other 
threads/clients. It also guarantees a replication level of 3 for 

all stored data. There have also been no specific guarantees 
as to latency or specific mention of SLAs. 
1.3 Data Placement 
The Azure fabric layer is responsible for the placement of 
data. While it is not directly aware of replicas, it is able to 
ensure that instances of the storage service are running in 
different fault domains. From the whitepapers Microsoft 
has made available, it looks like a fabric controller only 
operates in one data center. There is a chance that users are 
able to choose which data center to use. 
 
2 Bigtable 
As the name suggests, Bigtable stores large amounts of data 
in a table. While it is not a full relational model, it is 
essentially a multidimensional database. 
2.1 Replication 
As mentioned above, the Bigtable master server makes sure 
that only one server is actually modifying a tablet at a time. 
While this looks like Bigtable is ignoring replication 
entirely, every tablet’s SSTables are actually being stored in 
GFS. Bigtable neatly bypasses the problem of replication 
and lets GFS handle it. Bigtable will inherit the replication 
level of the folders where the SSTables are stored. 
2.2 Failures 
All failure detection for Bigtable eventually comes down to 
Chubby. When a tablet server first starts up, it contacts  
Chubby and makes a server-specific file, and obtains an 
exclusive lock on it. This lock is kept active as long as the 
tablet has a connection to Chubby, and will immediately 
stop serving tablets if it loses that lock. If a tablet server 
ever contacts Chubby and finds the file gone, it will kill 
itself. The master server is responsible for periodically 
polling the tablet servers and checking to see if they are still 
up. If the master cannot contact a tablet server, it first 
checks to see if the tablet server can still communicate with 
Chubby. It does so by attempting to obtain an exclusive 
lock on the tablet server file. If the master obtains the lock, 
Chubby is alive and the tablet can’t communicate with 
Chubby. The master then deletes the 
server file, ensuring that the server will not attempt to serve 
again. If the master’s Chubby session expires, the master 
immediately kills itself without effecting tablet serving. A 
cluster management system running alongside Bigtable is 
responsible for starting up a new master server if this 
happens.  
The master server will kill itself and the cluster manager 
will repeatedly try to kick start a new master until Chubby 
starts responding again. 
2.3 Accessing Data 
Every client is initially sent a library of tablet locations, so 
they should initially be able to directly contact the correct 
tablet server. Over time, tablet servers die, some may be 
added, or tablets may be deleted or split. Bigtable has a 3-
tier hierarchy for tablet location. First, there is a file stored 
in Chubby that contains the location of the root tablet. 
Every Bigtable instance has its own root tablet. A root 
tablet specifies the location of all tablets in a METADATA 
table. This METADATA table holds the locations of all 
user tables as well as some tablet-specific information 
useful for debugging purposes. The root tablet is simply the 
first tablet of the METADATA table. The root tablet is 
treated specially – it is never split so that the tablet location 
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hierarchy doesn’t grow. With this scheme, 234  tablet 
locations can be addressed. 
The client library caches the tablet locations from the 
METADATA table, and will recursively trace through the 
hierarchy if it doesn’t have a tablet, or the tablet location 
is scale. With an empty cache, it will take 3 round trips but 
may take up to 6 with a stale cache. None of these 
operations need to read from GFS, so the time is negligible. 
The tablet servers have access to sorted SSTables, so they 
can usually locate required data (if not already in memory) 
with a single disk access. 
2.4 Data Integrity 
Bigtable is not directly involved with maintaining data 
integrity. All Bigtable data is stored in GFS, and that is 
what is responsible for actually detecting and fixing any 
errors that occur in data. When a tablet server goes down 
there is a chance that a table modification was not 
committed, or a tablet split was not properly propagated 
back to Chubby. Keeping all tablet operation logs in GFS as 
well solves the first problem: a new tablet server can read 
through the logs, and ensure all tablets are up to date. 
Tablet splits are even less of a problem, as a tablet server 
will report any tablets it has that are not referenced by 
Chubby. 
2.5 Consistency and Guarantees 
Bigtable guarantees eventual consistency – all replicas are 
eventually in sync. Tablet servers store any tablet 
modifications in memory, and will write permutations to a 
log, but will not necessarily wait for GFS to confirm that a 
write has succeeded before confirming it with users. This 
helps to improve latency, and give users a more interactive 
experience, such as when using Google Earth. Bigtable 
inherits all of the GFS guarantees pertaining to data 
replication, error recovery, and data placement. 
2.6 Metadata 
The METADATA table contains the metadata for all tablets 
held within an instance of Dynamo. This metadata includes 
lists of the SSTables which make up a tablet, and a set of 
pointers to commit logs for the tablet. When a tablet server 
starts serving a file, it first reads the tablet metadata to learn 
which SSTable files need to be loaded. After loading the 
SSTables into memory, it works through the commit logs, 
and 
brings the version in memory up to the point it was at when 
the tablet was last accessed. 
2.7 Data Placement 
All of Bigtable’s data placement is handled by GFS – it has 
no direct concern for data placement. As far as Bigtable is 
concerned, there are only single copies of files – it uses 
GFS handles to access any files needed. While Bigtable is 
not 
directly aware of multiple versions of files, it can still take 
advantage of replicas through GFS. 
2.8 Security 
Bigtable is designed to run in a trusted environment, and 
does not really have much in the way of security measures. 
Theoretically, a user may be able to have encrypted row and 
column names, as well as the data in the fields. This would 
be possible since these are all arbitrary strings. While 
encrypting row names means you could potentially use 
some of the grouping abilities, there is no reason a user 
would not be able to gain some security with this method. 
 

3.  Google File System 
The Google File System (GFS) is designed by Google to 
function as a backend for all of Google’s systems. The 
basic assumption underlying its design is that components 
are expected to fail. A robust system is needed to detect and 
work around these failures without disrupting the serving of 
files. GFS is optimized for the most common operations – 
long, sequential and short, random reads, as well as large, 
appending and small, arbitrary writes. Additionally, a major 
goal in designing GFS was to efficiently allow concurrent 
appends to the same file. As a design goal, high sustained 
bandwidth was deemed more important than low latency in 
order to accommodate large datasets. A GFS instance 
contains a master server and many chunk servers. The 
master server is responsible for maintaining all file system 
metadata and managing chunks (stored file pieces). There 
are usually also several master replicas, as well as shadow 
masters which can handle client reads to help reduce load 
on a master server. The chunk servers hold data in 64 MB-
sized chunks. 
3.1 Checkpointing 
In GFS, the master server will keep logs tracking all chunk 
mutation. Once a log file starts to become too big, the 
master server will create a checkpoint. These checkpoints 
can be used to recover a master server, and are used by the 
master replicas to bring a new master process up. 
3.2 Replication 
By default, all GFS maintains a replication level of 3. This 
is, however, a configurable trait: “. . .users can designate 
different replication levels for different regions of the file 
namespace”. For example, a temp directory generally has a 
replication level of 1, and is used as a scratch space. The 
master server is responsible for ensuring that the replication 
level is met. This not only involves copying over chunks if 
a chunk server goes down, but also removing replicas once 
a server comes back up. As a general rule, the master server 
will try to place replicas on different racks. With Google’s 
network setup, the master is able to deduce the network 
topology from IP addresses. 
3.3 Failures 
When it comes to failures, GFS always expects the worst. 
The master server regularly exchanges heartbeats with the 
chunk servers. If the master server does not receive a 
heartbeat from a chunk server in time, it will assume the 
server has died, and will immediately start to spread the 
chunks located on that server to other servers to restore 
replication levels. Should a chunk server recover, it will 
start to send heartbeats again and notify the master that it is 
back up. At this point the master server will need to delete 
chunks in order to drop back down to replication level and 
not waste space. Because of this approach, it would be 
possible to wreak havoc with a GFS instance by repeatedly 
turning on and off a chunk server. Master server failure is 
detected by an external management system. Once this 
happens, one of the master server replicas is promoted, and 
the master server process is started up on it. A full restart 
usually takes about 2 minutes – most of this time is spent 
polling the chunk servers to find out what chunks they 
contain 
3.4 Data Access 
Clients initially contact the master server to gain access to a 
file, after which the client interacts directly with the 
necessary chunk server(s). For a multi terabyte file, a client 
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can keep track of all chunk servers in its cache. The chunk 
server directly interacting with clients is granted a chunk 
lease by the master server, and is now known as the 
primary. The primary is then responsible for ordering any 
operations on the data serially. It is then responsible for 
propagating these changes to the other chunk servers that 
hold the chunk. If a client is only looking to read data, it is 
possible for the client to go through the shadow master as 
opposed to the master server. It is possible for concurrent 
writes to get interleaved in unexpected ways, or for failed 
write attempts to show themselves as repeated data in 
chunks. GFS assumes that any application using it is able to 
handle these possible problems though redundant data may 
hurt the efficiency of reads. 
3.5 Data Integrity 
Each chunk in GFS keeps track of its own checksum 
information this information is unique for each chunk – it is 
not guaranteed to be the same even across replicas. Chunk 
servers are responsible for checking the checksums of the 
chunks they are holding. With this, it is possible for the 
system to detect corrupted files. If a corrupted chunk is 
detected, the chunk is deleted, and copied from another 
replica. 
3.6 Consistency and Guarantees 
GFS is built to handle multiple concurrent appends on a 
single file. It is up to a primary chunk server to order 
incoming permutation requests from multiple clients into a 
sequential order, and then pass these changes on to all other 
replicas. Because of this, it is possible that a client will not 
see exactly what they wrote on a sequential read – there is a 
possibility that permutations from other clients have been 
interleaved with their own. Google describes this state as 
consistent but undefined – all clients will see the same data, 
regardless of which replica is primary, but mutations may 
be interspersed. When there is a write failure, a chunk may 
become inconsistent. 
This is a case where there may be redundant lines of data in 
some but not all replicas. As GFS was built to maintain 
bandwidth, as opposed to meet a targeted latency goal there 
are no guarantees that pertain to latency. GFS does 
guarantee maintenance of the specified replication level 
which is achieved using system heartbeats. GFS also cannot 
guarantee full consistency in the face of write failures. A 
slightly looser definition of consistency – at least a single 
copy of all data is fully stored in each replica – is what GFS 
supplies. Any application built on top of GFS that can 
handle these possible inconsistencies should be able to 
guarantee a stronger consistency. 
3.7 Metadata 
In GFS, the master server contains metadata about all 
chunks contained in the system. This is how the master 
server keeps track of where the chunks are located. Each 
chunk has its own set of metadata as well. A chunk has a 
version number, as well as its own checksum information. 
3.8 Data Placement 
The master server attempts to place replicas on separate 
racks, a feat made possible by Google’s network scheme. 
The master server also attempts to balance network load, so 
it will try to evenly disperse all chunks. 
3.9 Security Scheme 
GFS expects to be run in a trusted environment, and has no 
major security approaches. If a user could bring down a 
chunk server, modify the chunk versions held on it, and 

reconnect it to the system, GFS would slowly grind to a halt 
as it believes that that server has the most up-to-date chunks 
and begins deleting and rewriting all these chunks. This 
would create a lot of network traffic, and theoretically bring 
down not only any service that relies on GFS, but also 
anything else that requires network bandwidth to work. 
 
4. Dynamo 
Dynamo is the back end for most of the services provided 
by Amazon. Like S3 it is a distributed storage system. 
Dynamo stores data in key-value pairs, and sacrifices 
consistency for availability. Dynamo has been designed to 
store relatively small files and to retrieve them very 
quickly. A web page may have several services which each 
have their own Dynamo instance running in the background 
– this is what leads to the necessity of making sure latency 
is low when retrieving data. 
Dynamo uses consistent hashing to make a scalable system. 
Every file in the system identified by a key is hashed, and 
this hash value is used to determine which node in the 
system it is assigned to. This hash space is treated as a ring, 
which is divided into Q equally sized partitions. Each node 
(server) in the system is assigned an equal number of 
partitions.. In this figure, there are a total of 8 partitions. 
Nodes A, B, and C are responsible for keeping copies of all 
files where the hashed key falls into the striped partition 
that they manage. 
4.1 Checkpointing 
Dynamo nodes share information via a gossip based 
protocol. There are no regular heartbeats sent between the 
nodes. All communication is pushed by client requests. If 
there is no request for data, the nodes do not communicate 
and do not care if another node is down. Periodic tests to 
see if a node is available occur only if a node is found to be 
unreachable during a client request. 
4.2 Replication 
With Dynamo, a quorum-like system is used to determine if 
a read or write was successful. If enough nodes reply that a 
write/read was successful, the whole operation is 
considered successful – even if not all N replicas are written 
to or read from. Dynamo allows the service writer to 
specify not only N, but R and W as well. R is the number of 
successful reads necessary for the whole operation to be 
successful, and W is the number of writes. Dynamo will 
report a successful write if W-1 nodes report success, so to 
make a system that is always up, and will never reject a 
write, W can be set to 1. Generally, W and R are both less 
than N, so that the system can make progress in the 
presence of failures. A suggested configuration for Dynamo 
is to have R + W > N. A general configuration of (N,R,W) 
is (3,2,2). 
4.3 Failures 
Dynamo operates under the assumption that hardware 
failures are expected, and trades data consistency 
guarantees for availability. It uses a gossip-based system to 
detect failures of nodes. Once a node stops responding, 
other nodes will  eventually propagate knowledge of the 
failure. As a design feature, nodes are not considered 
removed unless an administrator issues an explicit removal 
command – this means the system will gracefully handle 
transient downtimes. If a coordinator cannot reach a node 
for a write, it will simply pass the data on to the next 
available node in the hash ring. This will contain an extra 
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bit of metadata that marks it as belonging elsewhere. Once 
a node comes back online, this information can be passed 
back to it. If a node is not available, the data presumed to be 
on that node is not immediately replicated on another node 
this only happens when an administrator explicitly removes 
the node via a command. Dynamo is built under the 
expectation that there will be many transient failures, so 
there is no scramble to ensure replication levels are met 
when a node stops responding to requests. Because of this, 
some reads may fail if R is set equal to N. Once a node has 
been explicitly removed, all key ranges previously held by 
that node are reassigned to other nodes while ensuring that 
a given node is not overloaded as a result of this 
redistribution. 
4.4 Accessing Data 
Dynamo’s gossip-based protocol for node discovery 
ensures that all nodes know in one step the exact node to 
send a read or write request to. There are two main methods 
of accessing data: (1) using a dedicated node to handle 
client requests or (2) having several dedicated nodes, or 
coordinators, that process client requests and forward them 
to the appropriate nodes. The former approach can lead to 
unbalanced network nodes while the latter approach results 
in a more balanced network and a lower latency can be 
assured. 
4.5 Data Integrity 
There is no specific mention of detecting corruptions in 
data, or how any corresponding error recovery may occur. 
Since data is stored as a binary object, it may be left up to 
the application developers to detect data corruption, and 
handle any sort of recovery. Reported results in live settings  
do not indicate permanent data loss. Amazon requires 
regular archival of every system – there is a chance that this 
archival data is used for recovery if errors in data are found 
4.6 Consistency and Guarantees 
Dynamo guarantees eventual consistency – there is a 
chance that not all replications contain the same data. Due 
to transient network failures and concurrent writes, some 
changes may not be fully propagated. To solve this 
problem, each object also contains a context. This context 
contains a version vector, giving the ability to track back 
through changes and figure out which version of an object 
should carry the most precedence. There are several 
different schemes for handling this. Dynamo 
itself supports several simple schemes, including a last-
write-wins method. There is also an interface that allows 
developers to implement more complex and data specific 
merging techniques. Merging of different object versions is 
handled on reads. If a coordinator retrieves multiple 
versions of an object on a read, it can attempt to merge 
differences before sending it to the client. Anything that 
cannot be resolved by the  coordi- nator is passed onto the 
client. Any subsequent write from that client is assumed to 
have resolved any remaining conflicts. The coordinator 
makes sure to write back the resolved object to all nodes 
that responded to the object query. The only other base 
guarantee provided by Dynamo is performance geared 
towards the 99.99th percentile of users – millisecond 
latencies are assured. Aside from this, service developers 
are allowed to tweak the system to fit the guarantees 
necessary for their application through the N, R and W 
settings. 
 

4.7 Metadata 
In Dynamo, the object metadata is referred to as context. 
Every time data is written, a context is included. The 
context contains system metadata and other information 
specific to the object such as versioning information. There 
may also be an extra binary field which allows developers 
to add any additi- onal information needed to help their 
application run. The metadata is not searchable, and only 
seems to interact with Dynamo when resolving version 
conflicts as mentioned above. 
4.8 Data Placement 
According to DeCandia et al. , there are guarantees in place 
to ensure that replicas are spread across different data 
centers. It is likely that Amazon has a particular scheme that 
allows Dynamo to efficiently determine the locations of 
nodes. An object key is first hashed to find its location on 
the network ring. Moving around the ring clockwise from 
that point, the first encountered node is where the first copy 
of the data is placed. The next N-1 nodes (still moving 
clockwise) will contain replicas of the data. There are no 
current methods of data segregation in Dynamo – there is 
simply a get() and put() interface for developers, and no 
support for a hierarchical structure. Each service using 
Dynamo has its individual instance of it running. For 
example, your shopping cart will not be able to access the 
best seller’s list. On the other hand, Dynamo has no 
guarantees that the different instances are not running on 
the same machine. 
4.9 Security 
Dynamo has been designed to run in a trusted environment, 
so there is no structure in place to handle security concerns. 
By design, each service that uses Dynamo has its own 
separate instance running. Because of this, users do have 
some sense of security, as there is some natural separation 
of data, and one application cannot access the data of 
another. 
 
5. xFS 
Unlike the other systems mentioned here, xFS never made 
it to a production environment.xFS is the original 
“Serverless File System”, and several systems in production 
today build upon ideas originally brought up in. xFS was 
designed to run on commodity hardware, and expected to 
handle large loads and multiple users. Based on tracking 
usage patterns in an NFS system for several days, one 
assumption xFS makes is that users other than the creator of 
the file rarely modify files. 
5.1 Failure Model 
In xFS, when a machine fails it is not expected to come 
back online. Upon failure of a machine, data is 
automatically shuff- led around to compensate for the loss. 
While failures are as- 
summed to be permanent, the system was designed to be 
able to come back up from a full loss of functionality. 
5.2 Replication 
xFS does not support replication of files. Instead, it 
supports a RAID approach for storing data. In xFS, servers 
are organized into stripe groups. Each stripe group is a 
subset of the set of data servers. When a client writes to a 
file, it is gathered into a write block that is held in the 
client’s cache. There are two clients, each building their 
own write block. Once the write block is full, the data is 
sent to the server group to be written to file. For a server 
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group with N servers, the file is split into N-1 pieces, and 
striped in a RAID pattern across all the ser-. vers.The Nth 
stripe is a parity block that contains the XOR of all the 
other pieces, and is shown as a striped block. This parity 
block will go to the parity server for the group. This way, if 
a server is lost, or a piece becomes corrupted it can be 
restored. One downside to this approach is that if multiple 
servers from a group go down, the data may be permanently 
lost, and xFS will stop working. In general, the replication 
level of a file can never be greater than the number of 
servers in the server group. 
5.3 Data Access 
In xFS a client will connect to a system manager, which 
will look up the appropriate server group, and have the 
client connect to the server group leader. In general, this 
takes about 3 hops (not including the actual transmission of 
data).  Generally, the system will attempt to move data to 
be as close to the user as possible (in many cases, the 
design expects the client to be running on a machine that is 
also acting as a data server), incurring the short term 
penalty in network traffic of moving a file for the long term 
bonus of not needing further interaction with a system 
manager. 
5.4 Integrity 
Because of the RAID backend of xFS, data corruption can 
be detected and repaired using the parity block computed 
when data is written. xFS also uses this information to 
recover missing stripe blocks when a server in a stripe 
group fails. 
5.5 Consistency and Guarantees 
xFS guarantees read-what-you-wrote consistency, but it 
also allows users to read stale data – meaning that the best 
overall consistency guarantee that it can achieve is eventual. 
It is also not clear that the system can effectively handle 
concurrent writes.xFS never made it to a production 
environment, so there was never a strong need to establish 
any guarantees governing access times. Additionally, xFS 
was designed to 
handle flux in the number of available servers.  
5.6 Metadata 
The main advantage of xFS is its fully dynamic structure. 
The idea is to be able to move data around to handle load  
fluctuat-ions and to increase locality. The system uses 
metadata  infor-mation to help locate all files and put them 
back together in order. 
5.7 Data placement 
Managers in xFS try to ensure that data is being held as 
close to the client accessing it as possible–in some cases 
even shifti-ng the location of data as a client starts writing 
to it. While this seems unwieldy, xFS uses a log-based 
storage method, so there is not too much of a network hit as 
data is shifted with a new write closer to the current client. 
5.8 Security 
xFS was designed to be run in a trusted environment, and it 
is expected that clients are running on machines that are 
also acting as storage servers. It is, however, possible for 
xFS to be mounted and accessed from an unsafe 
environment. Unfortun-ately this is more inefficient and 
results in much more network traffic. It is also possible for 
a rogue manager to start  indiscriminately overwriting data 
that can cause the entire system to fail. 
 
 

6. Amazon S3 
The Simple Storage Service (S3) from Amazon is used by 
home users, small businesses, academic institutions, and 
large enterprises. With S3 (Simple Storage Service), data 
can be spread across multiple servers around the US and 
Europe (S3-Europe). S3 offers low latency, infinite data 
durability, and 99.99% availability. 
6.1 Data Access and Management 
S3 stores data in 2 levels: a top level of buckets and data 
objects. Buckets are similar to folders, and can hold an 
unlimited number of data objects. Each Amazon Web 
Services (AWS) account can have up to 100 buckets. 
Charging for S3 is computed at the bucket level. All costs 
levels are tiered, but the basic costs as of January 2010 are 
as follows: storage costs $0.15/GB/month in the US, $0.165 
in N California, and $0.15/GB/month in Europe; $0.10/GB 
for uploads  and $0.17/GB for downloads; and $0.01/1,000 
PUT, COPY, POST, or LIST operations, $0.001/10,000 
GET and all other operations. Each data object has a name, 
a blob of data (up to 5 GB), and metadata. S3 imposes a 
small set of predefined metadata entries, and allows for up 
to 4 KB of user generated {name, value} pairs to be added 
to this metadata. While users are allowed to create, modify, 
and delete objects in a bucket, S3 does not support 
renaming data objects or moving them between buckets–
these operations require the user to first download the entire 
object and then write the whole object back to S3. The 
search functions are also severely limited in the current 
implementa-tion. Users are only allowed to search for 
objects by the name of the bucket–the metadata and data 
blob itself cannot be searched. Amazon S3 supports three 
protocols for accessing data: SOAP, REST, and BitTorrent. 
While REST is most popularly used for large data transfers, 
BitTorrent has the potential to be very useful for the 
transfer of large objects. 
6.2 Security 
While clients use a Public Key Infrastructure (PKI) based 
scheme to authenticate when performing operations with 
S3, the user’s public and private keys are generated by 
Amazon and the private key is available through the user’s 
AWS site. This means that the effective security is down to 
the user’s AWS password, which can be reset through 
email. Since S3 accounts are linked directly to a credit card, 
this can potentially cause the user a lot of problems. Access 
control is specified using access control lists (ACL) at both 
the bucket and data object level. Each ACL can specify 
access  permissions for up to 100 identities, and only a 
limited number of access control attributes are supported: 
read for buckets or data objects, write for buckets, and, 
finally, reading and writing the ACL itself. The user can 
configure a bucket to store access log records. These logs 
contain request type, object accessed, and the time the 
request was processed. 
6.3 Integrity 
The inner workings of Amazon S3 have not been published. 
It is hard to determine their approach to error detection and 
recovery. Based on the reported usage , there was no  
permanent data loss. 
 

IV   CONCLUSIONS 
In this survey we have surveyed several approaches to data 
storage in cloud computing settings. Data centers have, and 
will continue, to be built out of commodity components. 
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The use of commodity components combined with issues 
related to the settings in which these components operate 
such as heat dissipations and scheduled downtimes imply 
that failures are a common occurrence and should be treated 
as such. In these environments, it is no longer a matter of if 
a system or component will fail, but simply when. Datasets 
are dispersed on a set of machines to cope with their 
voluminous nature and to enable concurrent processing on 
them. To cope with failures, every slice of the dataset is 
replicated a preset  number of times; replication allows 
applications to sustain failures to machines that hold certain 
slices of the dataset and also to initiate error corrections due 
to data corruptions. The European Network and Information 
Security Agency (ENISA) recently released a document 
outlining the security risks in cloud computing settings. 
Among the concerns raised in this document include data 
protection, insecure or incomplete data deletion, and the 
possibility of malicious insiders. Other security related 
concerns  that have been raised include data segregation, 
control over a data’s location, and investigative support. 
Most of the systems that we have described here do not 
adequately address several of these aforementioned security 
concerns and also exacerbate the problem by designing 
systems that are presumed to operate in a trusted 
environment: this allows us to construct situations, in some 
of these systems, where a malicious entity can wreak havoc. 
Issues related to security and trust need to be thoroughly 
addressed before these settings can be used for mission 
critical and sensitive information. 
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